Активированный комплекс. Теория переходного состояния (активированного комплекса) Физический смысл энтальпии активации

  • 10.10.2023

В основе теории переходного состояния используются следующие положения (постулаты теории).

    Столкновение частиц приводит к образованию связи между ними.

Неустойчивое состояние, в котором существуют связи между всеми частицами, называется переходным состоянием . Его также представляют как комплекс, временно образуемый взаимодействующими частицами, и называют активным комплексом .

Образование и распад активного комплекса происходит только в одном направлении (см. рис. 12 - 3).

    Порядок образования и распада комплекса таков. Взаимодействующие частицы движутся друг к другу до тех пор, пока между ними не возникнет дополнительная связь, образование которой приводит к ослаблению связи, уже существующей в одной из взаимодействующих молекул. Затем частицы начинают расходиться. Ослабленная ранее существовавшая связь исчезает, а возникшая при сближении частиц новая связь остается.

Рис. 12 - 3. Образование и распад активного комплекса.

Данный постулат запрещает распад активного комплекса на исходные частицы. Он может распадаться только с образованием продуктов реакции.

    Образование активного комплекса не приводит к нарушению распределения частиц по скоростям и энергиям Максвелла - Больцмана.

    Предполагается, что смещение электронных орбиталей в частицах при образовании активного комплекса происходит во много раз быстрее, чем движение атомных ядер.

Этот постулат теории переходного состояния называется принципом адиабатности . Он лежит в основе расчетов энергии взаимодействующих частиц, так как предполагает, что электроны всегда успевают принять наиболее устойчивую конфигурацию для задаваемого расстояния между центрами атомов.

Покажем, как могут быть использованы вышеприведенные постулаты для вывода основного уравнения теории переходного состояния.

Пусть протекает, как показано на рис. 12 - 3, реакция:

XY + Z = X + YZ .

Формально скорость этой реакции определяется уравнением:

. (12 - 26)

С другой стороны, скорость образования продуктов реакции определяется числом распадающихся в единицу времени активных комплексов по схеме:

X YZ  X + YZ.

Так как распад комплекса является мономолекулярной реакцией, то для ее скорости можно записать следующее выражение:

Используя уравнение (9 - 20), связывающее константу скорости необратимой реакции первого порядка со средним временем жизни превращаемого вещества , равенство (12 - 27) можно представить следующим образом:

. (12 - 28)

Сравнивая равенства (12 - 26) и (12 - 28), получим:

. (12 - 29)

Уравнение (12 - 29) является основным уравнением для расчета константы скорости реакции. Однако оно может получить окончательную форму, если выразить входящие в него величины через энергетические характеристики.

Среднее время жизни комплекса можно оценить, используя второй постулат теории.

Так как образование и распад комплекса происходят только в одном направлении, то его существование можно представить в виде одного колебательного цикла по новой связи. Энергия таких колебаний равна:

, (12 - 30)

где h - постоянная Планка.

Энергия, необходимая для возбуждения колебаний, равна кинетической составляющей сталкивающихся частиц. При движении частиц вдоль одной оси она равна:

, (12 - 31)

где  - постоянная Больцмана.

Из равенства кинетической энергии и энергии колебаний следует:

Частота колебаний представляет собой величину, обратную периоду одного колебания, а принимая во внимание, что комплекс существует только в течение одного колебательного цикла, имеем:

. (12 - 33)

При сохранении равновесного распределения скоростей и энергий частиц соотношение между концентрациями исходных веществ и активного комплекса определяется константой K # :

. (12 - 34)

Константа К # не является истинной константой равновесия, так как комплекс не распадается в обратном направлении (на исходные частицы). Однако соотношение между концентрациями зависит от энергии частиц в исходном состоянии и в состоянии активного комплекса. В этом случае можно воспользоваться уравнением изотермы химической реакции в следующей форме (см. часть I, стр. 77):

. (12 - 35)

Изменение энергии Гиббса для перехода из исходного состояния частиц в состояние активного комплекса (переходное состояние) G # определяется изменением энтальпии H # и изменением энтропии S # :

Следовательно, константа К # может быть представлена следующим образом:

. (12 - 36)

Таким образом, уравнение для константы скорости реакции приобретает вид:

. (12 - 37)

Величина , содержащая энтропию активацииS # , соответствует стерическому множителю В теории активных столкновений. Энтальпия активации H # в теории переходного состояния соответствует энергии активации. Для ее расчета необходимо знать энергию системы в исходном состоянии и энергию активированного комплекса.

Для расчета изменения энергии системы при переходе из исходного состояния в переходное необходимо найти зависимость энергии системы от расстояний между атомами. В рассматривавшемся случае образования активного комплекса из исходной молекулы XY и частицы Z независимыми переменными служат расстояния между центрами атомов в паре X и Y, которые обозначим r XY , и расстояние между центрами атомов Y и Z, которое обозначим r YZ . Энергия системы является функцией этих переменных:

В системе трех координат эта зависимость передается поверхностью. Для представления зависимости энергии от расстояний r XY и r YZ на плоскости используется такой же метод, что и при построении топографических карт, а именно: проводятся равноотстоящие друг от друга плоскости, перпендикулярные оси энергии, а линии пересечения этих плоскостей с поверхностью наносятся на плоскость чертежа. На рис. 12 - 4 показан пример построения энергетической диаграммы по этому методу.

Рис. 12 - 4 . Энергетическая диа­грамма трехатомной системы.

Для построения диаграммы рассчитывают потенциальную энергию системы для различных сочетаний расстояний r XY и r YZ . При этом используется четвертый постулат теории (принцип адиабатности), в соответствии с которым расчеты проводятся для систем с равновесными электронными конфигурациями. Молекула XY имеет минимум энергии при расстоянии между атомами, равном длине связи. Увеличение или уменьшение этого расстояния приводит к возрастанию энергии в отдельной молекуле. То же относится и к молекуле YZ. Следовательно, на диаграмме должны быть две области с пониженными значениями энергии А и В (их образно называют долинами). Области А и В отделены друг от друга участком небольшого подъема энергии С (его образно называют перевалом).

На типичной энергетической диаграмме (рис. 12 - 4) имеется несколько особых точек. Первая из них a отвечает исходному состоянию системы (состоянию до начала реакции). В этом состоянии расстояние между центрами атомов X и Y должно быть равно нормальной длине связи в устойчивом состоянии молекулы XY. Расстояние между центрами атомов Y и Z должно быть очень большим, так как частица Z еще не вступила во взаимодействие с молекулой XY. Еще одна характерная точка b отражает конечное состояние системы (состояние после реакции). Ей соответствует расстояние между центрами атомов Y и Z, равное длине связи во вновь образовавшейся молекуле, и большое расстояние между отделившейся частицей X и атомом Y. Третьей важнейшей точкой на энергетической диаграмме является точка перевала с . Именно в точке перевала существует полностью сформировавшийся активный комплекс.

Из изложенного следует, что химическое превращение согласно теории переходного состояния представляет собой переход из точки а в точку b через точку с . Такой переход происходит при минимальных значениях энергии (на энергетической диаграмме ему соответствует движение из точки а по дну долины А до перевала с , а затем спуск в долину В и движение до точки b ). Он называется путем реакции и показан пунктирной линией.

Если разрезать пространственную энергетическую диаграмму по пути реакции перпендикулярно плоскости r XY - r YZ , то в разрезе получится линия, длина которой соответствует длине пути реакции, а ордината - энергии системы. Назовем линию в этих координатах профилем пути реакции (рис. 12 - 5).

Рис. 12 - 5 . Энергетический профиль пути реакции.

Разность между энергией системы в переходном состоянии и энергией в исходном состоянии Е 1 , как показано на рис. 12 - 5, представляет собой классическую энергию активации прямой реакции. Разность энергий в состоянии активного комплекса и конечном состоянии Е −1 , равна энергии активации обратной реакции. Разность между энергиями активации прямой и обратной реакций соответствует тепловому эффекту реакции Н.

Таким образом, энергия активации в теории переходного состояния имеет четкую трактовку как величина энергетического барьера, равная разности энергий в переходном и исходном состояниях .

Как уже неоднократно отмечалось, все расчеты потенциальной энергии системы возможны лишь в том случае, когда электроны имеют равновесные конфигурации. В ходе реакции принцип адиабатности нарушается. Поэтому расчетное значение энергии оказывается завышенным. Для учета расхождения между расчетными и реальными значениями энергии в состоянии активного комплекса вводится поправочный коэффициент, который называется трансмиссионным коэффициентом . С введением этой поправки основное уравнение теории переходного состояния принимает окончательный вид:

. (12 - 38)

Теория переходного состояния применима не только к химическим превращениям, но и к другим кинетическим процессам: диффузии, вязкому течению, электрической проводимости растворов. Предполагается, что движение частиц в жидкости связано с преодолением энергетического барьера, величина которого равна энергии активации.

Теория столкновений непригодна для сложных молекул потому, что она предполагает существование молекул в виде идеальных упругих сферических частиц. Однако для сложных молекул, помимо поступательной энергии, должны быть учтены другие виды молекулярной энергии, например, вращательная и колебательная. По теории столкновений невозможно существование реакций, в которых должны столкнуться три и более молекулы. Кроме того, реакции разложения типа АВ = А + В трудно объяснить этой теорией.

Для преодоления указанных затруднений Х. Эйринг в 1935г. предложил теорию активированного комплекса. Всякая химическая реакция или любой другой молекулярный процесс, протекающий во времени(диффузия, вязкое течение и т.д.), состоит в непрерывном изменении расстояний между ядрами атомов. При этом конфигурация ядер, отвечающая начальному состоянию, через некоторую промежуточную конфигурацию – активированный комплекс или переходное состояние – превращается в конечную конфигурацию. Предполагается, что активированный комплекс образуется как промежуточное состояние во всех химических реакциях . Он рассматривается, как молекула, которая существует лишь временно и разрушается при определенной скорости. Этот комплекс образуется из таких взаимодействующих молекул, энергия которых достаточна для того, чтобы они смогли близко подойти друг к другу по схеме: реагентыактивированный комплекспродукты. Активированный комплекс имеет промежуточную структуру между реагентами и продуктами.Энергия активации реакции есть дополнительная энергия, которую должны приобрести реагирующие молекулы, чтобы образовать активированный комплекс, необходимый для протекания реакции.

Энергия активации всегда представляет поглощенную энергию, независимо от того, является ли общее изменение ее для реакции положительным (эндотермическая реакция) или отрицательным (экзотермическая реакция). Это схематично показано на рис. 6.

активация

превращение

Ход реакции

Рисунок 6. Энергетическая схема образования активированного комплекса.

Активация – сообщение молекулам такого количества энергии, что при их эффективном превращении происходит образование веществ в активированном состоянии.

Превращение – образование из веществ, находящихся в активированном состоянии, продуктов реакции.

Если система не может перейти через этот энергетический барьер в ней не могут произойти химические превращения. Значит эта система химически неактивна и нуждается в некоторой дополнительной энергии для активации. Количество этой дополнительной энергии зависит от того, какой энергией уже обладает система.

Энергия исходной системы не может быть меньше ее нулевой энергии (т.е. при 0 0 К). Для активации любой системы достаточно сообщить ей дополнительную энергию. Эта энергия называется истинной энергией активации.

Истинной энергией активации элементарного химического акта называется минимальная энергия, которой должна обладать исходная система сверх совей нулевой энергии (т.е. при 0 0 К), чтобы в ней могли произойти химические превращения. Разность истинной энергии активации обратной и прямой реакций равна тепловому эффекту реакции при абсолютном нуле.

Теория основывается на квантовых представлениях о строении молекул и химической связи. Она должна решить следующие задачи:

1) рассмотреть энергетику взаимодействия реагирующих частиц с целью определения энергии активации;

Рассмотрим бимолекулярную реакцию

AB + C → BC + A.

Считается, что частицы уже активированы, т.е. рассматриваем сам элементарный акт реакции, происходящий во времени.

При сближении активированных молекул взаимодействие между ними начинается еще до столкновения – старая связь ослабевает, но еще не разрушена, при этом одновременно образуется новая связь. Таким образом, образуется трехатомный конгломерат (активированный комплекс), который находится в равновесии с исходными веществами и затем распадается на продукты.

Активированный комплекс находится в равновесии с исходными веществами:

или, в более общем виде:

так что можно записать . Активированный комплекс устойчив во всех направлениях, кроме пути реакции. Т.е. активированный комплекс может распасться только на продукты реакции.

Путь или координата реакции – это взаимосвязанное изменение совокупности межъядерных расстояний при переходе от начальной конфигурации атомов к конечной, сопровождающееся минимальным изменением потенциальной энергии. Сечение поверхности потенциальной энергии вдоль пути реакции называется профилем пути реакции (рис. 4).

Рис. 4. Энергетический профиль вдоль координаты реакции

Из хода кривой видно, что в процессе элементарного акта химического превращения система должна преодолеть потенциальный барьер, равный энергии активации. Истинная энергия активации представляет собой разность энергий активированного комплекса и исходных молекул, отсчитанных от нулевого колебательного уровня. Ее обозначают . Область состояния вблизи потенциального барьера можно рассматривать как переходное состояние. Для большинства элементарных реакций система, достигнувшая области переходного состояния, неизбежно перейдет в конечное состояние, т.е. перевалит через барьер.



Для определения необходимо построить поверхность потенциальной энергии U(q), т.е. знать зависимость потенциальной энергии от координаты реакции. Для этого необходимо решить уравнение Шредингера, что возможно только для простейших систем.

Расчет константы скорости элементарной реакции при заданной энергии активации основан на постулатах :

1. Распределение молекул по энергиям и скоростям подчиняется распределению Максвелла-Больцмана . Превращение активных комплексов в продукты реакции не нарушает этого распределения, т.е. доля активных частиц в ходе реакции не изменяется, и поэтому концентрацию активных комплексов можно вычислить из распределения Максвелла-Больцмана.

2. Реакция протекает адиабатически. Адиабатическое приближение состоит в том, что система взаимодействующих атомов делится на две подсистемы – медленную подсистему ядер и быструю подсистему электронов, которая успевает быстро, безынерционно перестроиться при изменении конфигурации ядер. Поэтому можно рассматривать только одну поверхность потенциальной энергии для ядер, которые и должны преодолеть энергетический барьер в ходе реакции.

3. Активированный комплекс находится в равновесии с исходными веществами

.

Скорость реакции определяется лимитирующей стадией – распадом активированного комплекса. Её можно определить либо по закону действующих масс

либо как число активных комплексов, прореагировавших в единицу времени ,

где - концентрация активированных комплексов, а τ – время жизни активированного комплекса.

.

Активированный комплекс существует не при определенном значении межъядерных расстояний, а в каком-то интервале δ, следовательно, время жизни комплекса

где - средняя скорость движения активированного комплекса через вершину энергетического барьера (одномерная скорость).

Используя приведенные выражения для средней скорости движения активного комплекса и аппарат статистической термодинамики, получаем следующее выражение для константы скорости:

,

где - постоянная Больцмана,

h – постоянная Планка

Константа равновесия активированного комплекса, которая равна .

В тех случаях, когда адиабатическое приближение не выполняется, и электронная подсистема преодолевает свой энергетический барьер, в выражение для k ск вносят трансмиссионный множитель , он меньше единицы:

.

Физический смысл трансмиссионного коэффициента состоит в том, что не всегда образованный активированный комплекс разваливается с образованием продуктов реакции, существует вероятность образования из него исходных веществ. При χ=1 эффективность развала АК в продукты составляет 100%.

При термодинамическом подходе константу равновесия выражают через разность термодинамических функций активированного комплекса и исходных веществ.

Для бимолекулярной реакции в растворе константу равновесия выражают через функцию Гельмгольца образования активированного комплекса:

Для бимолекулярной реакции в газовой фазе в формулу добавляется множитель RT/p 0 , необходимый для перехода от к :

Энтропийный множитель иногда интерпретируют как стерический фактор Р из теории активных соударений.

Серьезным недостатком теории переходного состояния является отсутствие экспериментальных данных о строении активированного комплекса, что затрудняет ее применение. Несмотря на это, благодаря сравнительной простоте математического аппарата она является наиболее широко используемой теорией кинетики элементарных химических реакций, позволяет правильно объяснить и полуколичественно предсказать много закономерностей для кинетики химических реакций.

Катализ

Явление катализа – это изменение скорости реакции под действием некоторых веществ, которые к концу реакции остаются в химически неизменном виде.

Разновидности катализа:

1) положительный – под действием некоторых веществ скорость реакции увеличивается;

2) отрицательный: под действием некоторых веществ скорость реакции уменьшается, такие вещества называются ингибиторами;

3) автокатализ: катализатором являются продукты реакции;

4) гомогенный: катализатор и реагенты находятся в одной фазе (газ или раствор);

5) гетерогенный: катализатор и реагенты находятся в разных фазах;

6) ферментативный: катализатором является биологический фермент.

Принципы катализа :

1) катализатор принимает участие в химической реакции, образуя промежуточные продукты, но в конце реакции выделяется в химически неизменном виде. Физическое состояние катализатора, входящего в активный комплекс, может существенно изменяться, например, уменьшатся размеры зерен твердого катализатора, изменится структура поверхностных слоев;

2) катализатор не смещает положение равновесия, а лишь увеличивает скорость прямой и обратной реакции в равной степени;

3) действие катализатора является специфичным (селективным);

4) катализатор увеличивает скорость реакции за счет уменьшения Е акт, ведет реакцию по пути с меньшим энергетическим барьером.

Гомогенный катализ

Рассмотрим схему реакции, протекающей без катализатора:

A + B → AB * →C + D.

В присутствии катализатора реакция протекает в несколько стадий:

1.

2.

При условии k 3 >>k 1 скорость образования продуктов можно выразить через концентрации реагентов и катализатора:

Это уравнение лежит в основе кинетики гомогенных каталитических реакций. Из уравнения видно, что скорость процесса прямо пропорциональна концентрации катализатора, исключение составляют лишь случаи, когда катализатор находится в большом избытке, в результате чего скорость процесса лимитируется не кинетическими, а физическими закономерностями, например, диффузией растворенного вещества к катализатору.

Энергетический профиль каталитической реакции представлен на рисунке 4.

Рис.4. Энергетические профили
реакций с катализатором и без него.
Е 1 – энергия активации некаталитической реакции,
Е 2 – каталитической реакции

В ранних исследованиях предполагалось, что поверхность катализатора энергетически однородна (Лэнгмюр). В дальнейшем была экспериментально доказана адсорбционная неоднородность поверхности. Возникло представление о том, что каталитически активны только определенные участки поверхности, на которых имеются адсорбционные центры. Здесь вещество способно образовать активное для протекания данного каталитического процесса промежуточное поверхностное соединения, благодаря чему понижается энергия активации реакции.

Гетерогенный катализ

В случае гетерогенного катализа реакции происходят на границе раздела фаз.

Гетерогенный катализ состоит из следующих стадий:

1. массоперенос реагентов к катализатору;

2. абсорбция – образование абсорбированного комплекса между реагентом и катализатором;

3. каталитическая реакция – образование продукта в основном адсорбированном состоянии;

4. десорбция продукта;

5. внутренний массоперенос (изнутри катализатора);

6. внешний массоперенос (из области реакции).

Общая скорость каталитической реакции определяется скоростью самой медленной из этих стадий. Если не рассматривать диффузию и считать, что равновесие «адсорбция ↔ десорбция» устанавливается быстро, то скорость каталитической реакции определяется скоростью реакции в адсорбционном слое, где роль реагента играют свободные адсорбционные центры. Простейший механизм гетерогенного катализа описывается схемой:

.

Для придания катализаторам большей избирательности, термической стойкости, механической прочности и активности их часто применяют в форме многокомпонентных систем: смешанных, на носителях, промотированных катализаторов.

Промоторы - это вещества, которые не обладают каталитическими свойствами, но добавление их к катализатору значительно увеличивает его активность.

Каталитические яды - это вещества, понижающие активность катализатора.

Активность катализаторов оценивают либо количеством вещества (в молях), реагирующих в единицу времени под воздействием единицы массы катализатора, или количеством вещества (в молях), реагирующих в единицу времени под воздействием единицы поверхности катализатора.

Ферментативный катализ

Ферментативными реакциями называются такие химические процессы в биологических системах, скорость которых регулируется веществами биологического происхождения. Это белковые молекулы, называемые ферментами или энзимами.

Ферментативный катализ играет огромную роль в жизнедеятельности организма. Широкое применение получили ферментные препараты при нарушениях функции желудочно-кишечного тракта, связанных с недостаточной выработкой пищеварительных ферментов (пепсин, панкреатин). При ожогах, гнойных ранах, гнойно-воспалительных заболеваниях легких, когда необходимо разрушить накопившиеся в большом количестве белковые образования, применяются протолитические ферменты, приводящие к быстрому гидролизу белков и способствующие рассасыванию гнойных скоплений. Для лечения инфекционных заболеваний используются препараты лизоцина, которые разрушают оболочку некоторых болезнетворных бактерий. Очень важные ферменты, которые рассасывают тромбы (сгустки крови внутри кровеносных сосудов) – плазмин, трипсин, химотрипсин, на их основе с разными добавками созданы различные лекарственные препараты – стрептокиназа, стрептаза, и т.п., широко применяемые в медицине.

Выделения ферментов в особый класс катализаторов обусловлен особыми свойствами этих веществ:

1) высокая специфичность;

2) эффективность действия;

3) биологические катализаторы образуются и разрушаются в процессе
жизнедеятельности организма.

По своей каталитической активности биологические катализаторы в тысячи раз превышают неорганические. Специфичность действия связана с особенностями структуры фермента и субстрата. Одни части каталитической системы выполняют функции, главным образом связанные с пространственной организацией системы, другие в этой организационной системе осуществляют собственно катализ. Т.е., как и при неферментативном катализе, в каталитической реакции участвует не вся белковая молекула в целом, а лишь определенные ее участки – активные центры фермента.

Простейшая схема ферментативного катализа включает обратимое образование промежуточного комплекса фермента (Е) с реагирующим веществом (субстратом S) и разрушение этого комплекса с образованием продуктов реакции (Р):

.

При условии, что k 3 >>k 1 , с учетом уравнения материального баланса [E]=- (индекс «0» означает начальную концентрацию) получаем уравнение Михаэлиса-Ментен. В уравнении скорость образования продукта выражена через начальную концентрацию фермента и текущую концентрацию субстрата:

,

где w max =k 2 – максимальная скорость реакции;

- это константа Михаэлиса.

Введение в уравнение для константы скорости реакции (43) стерического фактора не решило проблемы в теории активных соударений. Причина в отсутствии прямой корреляции между вероятностными факторами и вероятностью того, что реагирующие молекулы столкнуться определенными группами.

В связи с этим большинство расчетов химической кинетики сегодня выполняются на основе теории абсолютных скоростей реакций (или теории активированного комплекса; или теории переходного состояния) – теории Эйринга.

Теория Эйринга исходит из предположения, что неравновесным состояниям можно приписать определенные термодинамические свойства, и, что полная реакция складывается из повторяющихся элементарных актов. Каждый элементарный акт является результатом взаимодействия небольшого числа атомов или молекул, приводящего к образованию новой относительно устойчивой конфигурации.

Под конфигурацией у Эйринга понимается система, т.е. определенное расположение взаимодействующих частиц в пространстве, с определенным распределением энергии между этими частицами и т.д. В простейшем случае это может быть расстояние между двумя частицами.

Начальные и конечные состояния стабильны. Им соответствует относительный минимум энергии. Для того чтобы достигнуть конечное состояние исходя из начального, вся группа атомов должна пройти через промежуточные состояния, обладающие более высокой энергией по сравнению, как с исходным состоянием, так и по сравнению с конечным состоянием. В некотором промежуточном состоянии энергия достигает максимума. Конфигурация, отвечающая максимуму свободной энергии, получила название активированного комплекса (активированного состояния). Согласно Эйрингу, если активированное состояние достигнуто, существует большая вероятность того, что реакция пройдет полностью. Дополнительная энергия, необходимая для достижения активированного состояния, получила название энергии активации процесса Е э .

В простейшем случае реакция может состоять в сближении 2-х молекул вдоль прямой линии до тех пор, пока при некотором критическом расстоянии они не образуют активируемый комплекс М ++ .

А + В = М ++ = Р + Q (44)

Исходные положения теории Эйринга состоят в следующем:

1. Полная реакция складывается из повторяющихся элементарных единичных актов, каждый из которых представляет собой переход из некоторой начальной конфигурации в конечную конфигурацию (состояние). Переход осуществляется путем непрерывного изменения конфигурационной координаты.

Начальные и конечные конфигурации представляют собой стабильные состояния, котором соответствует относительный минимум энергетического рельефа, так что система в каждом из этих состояний стремиться вернуться в исходное положение, если ей сообщена малая энергия.

2. На любом пути реакции между начальным и конечным состояниями существует энергетический барьер, а наиболее предпочтительным путем реакции, обычно оказывается тот, для которого этот барьер наименьший. (Потенциальный рельеф свободной энергии)

3. На предпочтительном пути реакции между начальным и конечным состоянием существует критическая конфигурация, отвечающая максимуму свободной энергии. Эта конфигурация называется активированным комплексом (активированным состоянием). Если достигнуто активированное состояние, то существует большая вероятность, что реакция пройдет до конца.

4. В начальном состоянии реагирующие объемы находятся в равновесии с активированными комплексами, несмотря на то, что комплексы М ++ не образуют равновесных состояний.

5. Активированный комплекс обладает всеми свойствами обычной равновесной конфигурации, за исключением того, что у него нет степени свободы, отвечающей колебательному движению по пути реакции.

Исходя из вышеизложенных положений, выведем уравнение Эйринга для бимолекулярной реакции.

Поскольку активированный комплекс находится как бы в процессе распада на отдельные фрагменты, одно из внутренних колебаний, как было указано выше, Эйринг принял за поступательное движение в сторону реакции. Предполагается, что это колебание имеет классическую энергию

В классической теории принято, что энергия равномерно распределяется по степеням свободы, т.е. на каждую степень свободы соотносят энергию равную (kT/2) . Поскольку колебательное движение связано с изменением как потенциальной, так и кинетической энергии, то на одну колебательную степень свободы отводится в два раза большее значение энергии, т.е. kT .

В квантовой теории показано, что энергия молекулярного колебания равна hn.

Следовательно

Частота колебательного движения n, согласно предположению Эйринга, принимается равной скорости, с которой активированный комплекс движется через потенциальный барьер. Следовательно, для реакции (12.40) скорость реакции - это есть скорость прохождения комплекса через барьер, умноженная на концентрацию активированного комплекса:

v= (47)

В этом уравнении введен трансмиссионный коэффициент k , который представляет собой вероятность того, что молекула прошедшая через потенциальный барьер, продолжит свой путь вперед, а не возвратится назад. При расчетах обычно полагают k =1.

Поскольку в теории Эйринга принимается, что активированные комплексы находятся в равновесии с исходными веществами, то для расчетов можно использовать методы термодинамики и статистической механики, а значит законом действующих масс:

и уравнением изотермы:

(47)

Подстановка в уравнение дает:

(48)

Откуда для константы скорости реакции второго порядка можно записать

(49)

Константу равновесия К ++ выразим из уравнения изотермы (12.45):

DG ++0 – представляет собой изотермическую работу, необходимую для медленного перехода конфигурации молекул реагентов, находящихся в стандартном в критическое состояние активированного комплекса, находящегося в стандартном состоянии.

С другой стороны изменение стандартного изобарного потенциала в процессе активации связано с термодинамическими характеристиками предполагаемого равновесия уравнением Гиббса - Гельмгольца:

Поэтому уравнение (52) можно переписать как

Это и есть фундаментальное уравнение теории Эйринга . Хотя мы получили этот результат для константы скорости реакции второго порядка, он является совершенно общим. Более того, в теории термодинамики показано, что теория Эйринга включает в себя ТАС как частный случай.

Из-за множителя Т в предэкспоненциальном множителе уравнения Эйринга энтальпия активации оказывается не равной энергии активации в уравнении Аррениуса Е ар . Соотношение между ними можно получить, если найти выражение для тангенса угла наклона линии lnk - 1/T. Последовательно логарифмируя и дифференцируя уравнение Эйринга (53) найдем:

(54)

Энтропийный множитель exp(DS ++0 /к) является в этой теории аналогом стерического фактора р в теории активных столкновений. Значение DS ++0 может быть больше, равно или меньше нуля. Это объясняет возможность p> 1, что было необъяснимо в ТАС. По значению DS ++0 реакции делятся на три группы. При DS ++0 >>0 (р >1) реакции быстрые; при DS ++0 = 0 (р =0) реакции нормальные; при DS ++0 <<0 (р <1) реакции медленные.

Доказательство в теории переходного состояния того факта, что реакции зависят не только от энергии активации, но и от энтропии активации, позволяет объяснить различие в скоростях реакций с близкими энергиями активации. Скорость будет больше там, энтропия активации больше.

(переходного состояния)

Эта теория – простейший и исторически первый вариант статистической теории химических реакций. Разработана Э.Вигнером, М.Поляни, Г.Эйрингом, М.Эвансом в 30-х годах двадцатого века.

В основу теории также положено представление о столкновении молекул как непременном условии реакции, но при этом рассматривается механизм столкновения молекул.

Если мы рассмотрим такую реакцию: А + В = С, то исходя из теории переходного состояния, можно сказать, что эта реакция протекает так: А + В ⇄ Х ¹ ® С, где А и В – исходные вещества, Х ¹ – переходный комплекс, С – продукт реакции.

Что же собой представляет переходный комплекс? Сразу же после столкновения активных молекул А и В начинается перераспределение химических связей и образование переходного комплекса. Переходный комплекс – это такое состояние взаимодействующих молекул, когда старые связи еще не разорвались, а новые еще не образовались, но перераспределение связей уже началось. Переходный комплекс – эта когда молекулы А и В утратили свою индивидуальность и мы имеем сочетание атомов, промежуточное между А, В и С. Переходное состояние характеризуется непрерывным изменением расстояний между взаимодействующими атомами. В этом существенное отличие переходного комплекса от обычной молекулы, в которой средние расстояния между атомами не зависят от времени. Переходный комплекс не следует также путать с промежуточными продуктами, у которых расстояния между атомами тоже остаются неизмененными.

Следует отметить, что формирование переходного комплекса требует затраты энергии. Энергия, необходимая для превращения реагирующих веществ в состояние переходного комплекса, называется энергией активации. Так как исходные молекулы еще не распались, а уже начали формироваться связи, характерные для молекул продуктов реакции, то, естественно, энергия перехода в активированное состояние (Е а) меньше энергии разрыва связей в молекулах исходных веществ: E a < E диссоциации. Таким образом, образование переходного комплекса – процесс энергетически более выгодный, чем полный распад вступающих в реакцию молекул. Превращение активированного комплекса в продукты реакции всегда является процессом экзотермическим.

Основной постулат теории переходного состояния состоит в том, что исходные вещества всегда находятся в равновесии с переходным комплексами: А+В ⇄ Х ¹ ®С. Тогда константа химического равновесия образования переходного комплекса равна: . (26)

Из этого выражения концентрация переходного комплекса равна:

X ¹ = [A]×[B] (27)

Затем переходный комплекс необратимо разрушается с образованием продукта реакции С. Количественной характеристикой этого процесса служит частота распада переходного комплекса – Р.



Из статистической механики известно, что число Р зависит только от температуры. Эта зависимость имеет вид:

где k – постоянная Больцмана; h – постоянная Планка; Т – абсолютная температура.

Следовательно, для данной температуры число Р одинаково для всех переходных состояний, а скорость какой бы то ни было химической реакции зависит только от концентрации переходных комплексов:

V = (29)

Однако концентрация переходных состояний связана с концентрацией реагентов соотношением (27) и поэтому подставляя значение Х ¹ в уравнение (29) получаем выражение для скорости образования продуктов реакции.

V = ×[A]×[B] (30)

К обычной реакции взаимодействия А + В ⇄ С применим закон действия масс:

V = k v [A]×[B] (31)

(Символ k v употребляется для константы скорости в отличие от константы Больцмана).

Приравниваем правые части уравнений (30) и (31), получим:

k v = × или k v =P× (32).

Из уравнения (32) видно, что при данной температуре константа скорости реакции зависит от константы химического равновесия образования переходного комплекса и от частоты распада переходных комплексов.

Уравнение (32) называется основным уравнением теории переходного состояния.

В отличие от теории активных соударений теория переходного состояния сопоставляет различные возможные комплексы, выявляет большую или меньшую их достижимость и определяет в результате энергетически наиболее выгодный путь реакции.

Таким образом, в основе химической кинетики лежат две теории, которые взаимно дополняют друг друга. Если теория переходного состояния применяется для вычисления абсолютных скоростей электродных процессов, процессов диффузии и т.д., то теория активных соударений хорошо описывает, как правило, реакции в газовой фазе.